
1

Appendix A

The JC 2 algorithm computes ܥሾ௝ሿ,௞ , ሾܵ௝ାଵሿ,௞ and ݐݎܽݐݏ_ݏݐሺሾ݆ ൅ 1ሿ,݇ሻ values for 2  j+1 ൏

	݈݁݊ሺ݇ሻ and 1  k  m for the jobs [j] and [j+1] that are processed on machine k if ܴܦሾ௝ሿ,ሾ௝ାଵሿ  0.

JC 2 Algorithm:

Input: , , ݊ሾ௝ሿ, ݊ሾ௝ାଵሿ, ሾܵ௝ሿ,௞ ௜݌ ,ሺሾ݆ሿ,݇ሻݕ݀ܽ݁ݐݏ_ݏݐ ,ሺሾ݆ሿ,݇ሻݐݎܽݐݏ_ݏݐ ,
ሾ௝ሿ, ܴ௜

ሾ௝ሿ with i = 1,…, ݊ሾ௝ሿ,

and ݌௛
ሾ௝ାଵሿ with h = 1,…, ݊ሾ௝ାଵሿ

1. During cycle ଵ,ሾ௝ሿ:

1.1 ܼ଴:ൌ ሾܵ௝ሿ,௞ +	ݐݎܽݐݏ_ݏݐሺሾ݆ሿ,݇ሻ +	ݕ݀ܽ݁ݐݏ_ݏݐሺሾ݆ሿ, ݇ሻ

1.2 ଵܷ,௡ሾೕሿ
ሾ௝ሿ ≔ ܼ଴ ൅max ቄ,ܴ௡ሾೕሿ

ሾ௝ሿ ቅ, ܮଵ,௡ሾೕሿାଵ
ሾ௝ሿ ≔ ଵܷ,௡ሾೕሿ

ሾ௝ሿ ൅ ܳ

1.3 For i = ݊ሾ௝ሿ - 1, …, 1:

1.3.1 ଵܷ,௜
ሾ௝ሿ:= max{ܮଵ,௜ାଶ

ሾ௝ሿ +, ܼ଴+ܴ௜
ሾ௝ሿ}

ଵ,௜ାଵܮ 1.3.2
ሾ௝ሿ ≔ ଵܷ,௜

ሾ௝ሿ ൅ ܳ

2. During cycle ௘,ሾ௝ሿ, 2  e  ܴܦሾ௝ሿ,ሾ௝ାଵሿ + 1:

2.1 ܷ௘,௡ሾೕሿ
ሾ௝ሿ ≔ max ቄܮ௘ିଵ,௘

ሾ௝ሿ 	൅ 	, ௘ିଵ,௡ሾೕሿܮ
ሾ௝ሿ 	൅	݌௡ሾೕሿ

ሾ௝ሿ ቅ, ܮ௘,ଵା௡ሾೕሿ
ሾ௝ሿ :=	 ௘ܷ,௡ሾೕሿ

ሾ௝ሿ + Q

2.2 For i = ݊ሾ௝ሿ - 1, …, e:

ܷ௘,௜
ሾ௝ሿ ≔ ቄܮ௘,௜ାଶ

ሾ௝ሿ 	൅ 	, ௘ିଵ,௜ܮ
ሾ௝ሿ 	൅ ௜݌	

ሾ௝ሿቅ, ܮ௘,௜ାଵ
ሾ௝ሿ ≔ ௘ܷ,௜

ሾ௝ሿ ൅ ܳ

3. During cycle ߬ଵ,ሾ௝ାଵሿ:

Output: ሾܵ௝ାଵሿ,௞ ≔ ଵܷ,଴
ሾ௝ାଵሿ = ܮ஽ோሾೕሿ,ሾೕశభሿାଵ,஽ோሾೕሿ,ሾೕశభሿାଶ

ሾ௝ሿ ൅ ଵ,ଵܮ ,ߤ
ሾ௝ାଵሿ ≔ ଵܷ,଴

ሾ௝ାଵሿ ൅ ܳ

4. If ݊ሾ௝ሿ - ܴܦሾ௝ሿ,ሾ௝ାଵሿ  ݊ሾ௝ାଵሿ:

4.1 During cycle ௘,ሾ௝ାଵሿ, 2  e  ݊ሾ௝ାଵሿ:

4.1.1 ܷ௘ା஽ோሾೕሿ,ሾೕశభሿ,௡ሾೕሿ
ሾ௝ሿ ≔ max ቄܮ௘ିଵ,ଵ

ሾ௝ାଵሿ 	൅ 	, ௘ା஽ோሾೕሿ,ሾೕశభሿିଵ,௡ሾೕሿܮ
ሾ௝ሿ 	൅ ௡ሾೕሿ݌	

ሾ௝ሿ ቅ, ܮ௘ା஽ோሾೕሿ,ሾೕశభሿ,ଵା௡ሾೕሿ
ሾ௝ሿ ≔

ܷ௘ା஽ோሾೕሿ,ሾೕశభሿ,௡ሾೕሿ
ሾ௝ሿ ൅ ܳ

4.1.2 For i = ݊ሾ௝ሿ - 1,…, e + ܴܦሾ௝ሿ,ሾ௝ାଵሿ:

		ܷ௘ା஽ோሾೕሿ,ሾೕశభሿ,௜
ሾ௝ሿ ≔ max ቄܮ௘ା஽ோሾೕሿ,ሾೕశభሿ,௜ାଶ

ሾ௝ሿ 	൅ 	, ௘ା஽ோሾೕሿ,ሾೕశభሿିଵ,௜ܮ
ሾ௝ሿ 	൅	݌௜

ሾ௝ሿቅ, ܮ௘ା஽ோሾೕሿ,ሾೕశభሿ,௜ାଵ
ሾ௝ሿ ≔

ܷ௘ା஽ோሾೕሿ,ሾೕశభሿ,௜
ሾ௝ሿ ൅ ܳ

4.1.3 ܷ௘,௘ିଵ
ሾ௝ାଵሿ:= maxቄܮ௘ା஽ோሾೕሿ,ሾೕశభሿ,௘ା஽ோሾೕሿ,ሾೕశభሿାଵ

ሾ௝ሿ 	൅ 	, ௘ିଵ,௘ିଵܮ
ሾ௝ାଵሿ 	൅ ௘ିଵ݌	

ሾ௝ାଵሿቅ, ܮ௘,௘
ሾ௝ାଵሿ ≔ ܷ௘,௘ିଵ

ሾ௝ାଵሿ ൅ ܳ

4.1.4 For i = e - 2,…, 0:

2

௘ܷ,௜
ሾ௝ାଵሿ ≔ max ቄܮ௘,௜ାଶ

ሾ௝ାଵሿ 	൅ 	, ௘ିଵ,௜ܮ
ሾ௝ାଵሿ 	൅ ௜݌	

ሾ௝ାଵሿቅ for ݅ ൐ 0, otherwise ܷ௘,௜
ሾ௝ାଵሿ ≔ ௘,௜ାଶܮ

ሾ௝ାଵሿ ൅ in ,ߤ

both situations ܮ௘,௜ାଵ
ሾ௝ାଵሿ ≔ ܷ௘,௜

ሾ௝ାଵሿ ൅ ܳ

4.2 During cycle ௘,ሾ௝ାଵሿ, ݊ሾ௝ାଵሿ + 1  e  ݊ሾ௝ሿ - ܴܦሾ௝ሿ,ሾ௝ାଵሿ:

4.2.1 Repeat the Steps 4.1.1-4.1.2

4.2.2 ܷ ௘,௡ሾೕశభሿ
ሾ௝ାଵሿ ≔ max ቄܮ௘ା஽ோሾೕሿ,ሾೕశభሿ,௘ା஽ோሾೕሿ,ሾೕశభሿାଵ

ሾ௝ሿ ൅ ,ߤ ௘ିଵ,௡ሾೕశభሿܮ
ሾ௝ାଵሿ 	൅ ௡ሾೕశభሿ݌	

ሾ௝ାଵሿ ቅ ௘,ଵା௡ሾೕశభሿܮ ,
ሾ௝ାଵሿ ≔

ܷ௘,௡ሾೕశభሿ
ሾ௝ାଵሿ ൅ ܳ

4.2.3 For i = ݊ሾ௝ାଵሿ - 1, …, 0:

ܷ௘,௜
ሾ௝ାଵሿ ≔ max ቄܮ௘,௜ାଶ

ሾ௝ାଵሿ 	൅ 	; ௘ିଵ,௜ܮ	
ሾ௝ାଵሿ 	൅ ௜݌	

ሾ௝ାଵሿቅ if ݅ ൐ 0,	otherwise ௘ܷ,௜
ሾ௝ାଵሿ ≔ ௘,௜ାଶܮ

ሾ௝ାଵሿ ൅ ߤ , in

both situations, ܮ௘,௜ାଵ
ሾ௝ାଵሿ ≔ ௘ܷ,௜

ሾ௝ାଵሿ ൅ ܳ

4.3 Output: ܥሾ௝ሿ,௞ ≔ ௡ሾೕሿ,ଵା௡ሾೕሿܮ	
ሾ௝ሿ ሺሾ݆ݐݎܽݐݏ_ݏݐ , ൅ 1ሿ,݇ሻ ≔ ௡ሾೕሿି஽ோሾೕሿ,ሾೕశభሿ,ଵܮ	

ሾ௝ାଵሿ - ሾܵ௝ାଵሿ,௞

5. Otherwise if ݊ሾ௝ሿ - ܴܦሾ௝ሿ,ሾ௝ାଵሿ  ݊ሾ௝ାଵሿ:

5.1 During cycle ௘,ሾ௝ାଵሿ, 2  e  ݊ሾ௝ሿ - ܴܦሾ௝ሿ,ሾ௝ାଵሿ, repeat the Steps 4.1.1-4.1.4

5.2 During cycle ௘,ሾ௝ାଵሿ, ݊ሾ௝ሿ – ܴܦሾ௝ሿ,ሾ௝ାଵሿ + 1  e  ݊ሾ௝ାଵሿ:

5.2.1 ܷ௘,௘ିଵ
ሾ௝ାଵሿ ≔ max ቄܮ௘ିଵ,ଵ

ሾ௝ାଵሿ 	൅ 	, ௘ିଵ,௘ିଵܮ
ሾ௝ାଵሿ 	൅	݌௘ିଵ

ሾ௝ାଵሿቅ if e  ݊ሾ௝ሿ – ܴܦሾ௝ሿ,ሾ௝ାଵሿ + 1, otherwise

ܷ௘,௘ିଵ
ሾ௝ାଵሿ ≔ ቄܮ௡ሾೕሿ,௡ሾೕሿାଵ

ሾ௝ሿ 	൅ 	, ௘ିଵ,௘ିଵܮ
ሾ௝ାଵሿ 	൅ ௘ିଵ݌	

ሾ௝ାଵሿቅ, in both situations ܮ௘,௘
ሾ௝ାଵሿ ≔ ௘ܷ,௘ିଵ

ሾ௝ାଵሿ ൅ ܳ

5.2.2 For i = e - 2,…,0:

ܷ௘,௜
ሾ௝ାଵሿ ≔ max ቄܮ௘,௜ାଶ

ሾ௝ାଵሿ 	൅ 	; ௘ିଵ,௜ܮ	
ሾ௝ାଵሿ 	൅ ௜݌	

ሾ௝ାଵሿቅ 	if	݅ ൐ 0, otherwise ܷ௘,௜
ሾ௝ାଵሿ ≔ ௘,௜ାଶܮ

ሾ௝ାଵሿ ߤ+ , in

both situations ܮ௘,௜ାଵ
ሾ௝ାଵሿ:=	ܷ௘,௜

ሾ௝ାଵሿ ൅ ܳ

6. Output: ܥሾ௝ሿ,௞ =	ܮ௡ሾೕሿ,ଵା௡ሾೕሿ
ሾ௝ሿ ሺሾ݆ݐݎܽݐݏ_ݏݐ , ൅ 1ሿ,݇ሻ ൌ ௡ሾೕశభሿ,ଵܮ	

ሾ௝ାଵሿ - ሾܵ௝ାଵሿ,௞.

The starting time of the close-down period of job [j] is ܼ଴:ൌ ሾܵ௝ሿ,௞ + ሺሾ݆ሿ,݇ሻݐݎܽݐݏ_ݏݐ	

+ ሺሾ݆ሿ,݇ሻݕ݀ܽ݁ݐݏ_ݏݐ	 . By the BESS algorithm we know that starting from 0, ଵ,ሾ௝ሿ will be

executed. Thus, the robot first moves to the (݊ሾ௝ሿ)th step and the value of ଵܷ,௡ሾೕሿ
ሾ௝ሿ depends on if the

wafer in this step is finished or not. Hence, we have Statement 1.2. Then, the robot moves to step

i, i = ݊ሾ௝ሿ - 1, ݊ሾ௝ሿ - 2, …, 1, unloads a wafer there, moves to step i + 1 and loads the wafer there.

Thus, Statement 1.3 is realized in a similar way.

3

During cycle ௘,ሾ௝ሿ, 2  e  ܴܦሾ௝ሿ,ሾ௝ାଵሿ + 1, job [j] is performed in a decremental way and job

[j+1] has not started. Therefore, Statements 2.1 and 2.2 can be obtained easily.

During cycle ߬ଵ,ሾ௝ାଵሿ, as we can see from Fig. 7, we only unloads the first wafer of job [j+1]

from one load lock and loads it into the first step of ܿሾ௝ାଵሿ. Combined with Statement 2.2 we get

Statement 3.1.

In the following, if ݊ሾ௝ሿ ሾ௝ሿ,ሾ௝ାଵሿܴ݅ܦ -  ݊ሾ௝ାଵሿ , job [j+1] reaches the steady state before

BESS_close{[j]} ends. During cycle ௘,ሾ௝ାଵሿ , 2  e  ݊ሾ௝ାଵሿ , as job [j] is performed in a

decremental way, and job [j+1] is executed in an incremental way. Thus, similar to Statements

5.1.1-5.1.4 we can get Statements 4.1.1-4.1.4 in the JC 2 algorithm. Note that as ଵା஽௜ோሾೕሿ,ሾೕశభሿ,ሾ௝ሿ

has executed in Statements 2.1 and 2.2, hence, the index of U and L in Statements 4.1.1 and 4.1.2

has to start from 2 + ܴܦሾ௝ሿ,ሾ௝ାଵሿ.

During cycle ௘,ሾ௝ାଵሿ, ݊ሾ௝ାଵሿ + 1  e  ݊ሾ௝ሿ - ܴܦሾ௝ሿ,ሾ௝ାଵሿ, job [j+1] has reached the steady state

but job [j] is still run in a decremental way. Thus, we repeat Statements 4.1.1 and 4.1.2 for job [j].

Combined with Statement 4.2.1, we get Statements 4.2.2 and 4.2.3 such that ܥሾ௝ሿ,௞ and

ts_start{[j+1], k} can be determined.

If ݊ሾ௝ሿ - ܴܦሾ௝ሿ,ሾ௝ାଵሿ  ݊ሾ௝ାଵሿ, BESS_close{[j]} ends before job [j+1] reaches the steady state, and

during cycle 	௘,ሾ௝ାଵሿ , 2  e  ݊ሾ௝ሿ ሾ௝ሿ,ሾ௝ାଵሿܴܦ - , jobs [j] and [j+1] are also performed in a

decremental and incremental way. Therefore, we have to repeat Statements 4.1.1-4.1.4. However,

during cycle ߬௘,ሾ௝ାଵሿ, ݊ሾ௝ሿ - ܴܦሾ௝ሿ,ሾ௝ାଵሿ + 1  e  ݊ሾ௝ାଵሿ, BESS_close{[j]} has completed but job

[j+1] is still run in an incremental way. Thus, Statement 5.2 is obtained in a similar way such that

 .ሾ௝ሿ,௞ and ts_start{[j+1], k} can be determinedܥ

