
1

Appendix A

The JC 2 algorithm computes , , , and _ 1 , values for 2 j+1

	 and 1 k m for the jobs [j] and [j+1] that are processed on machine k if , 0.

JC 2 Algorithm:

Input: , , , , , , _ , , _ , , , with i = 1,…, ,

and with h = 1,…,

1. During cycle , :

1.1 : , +	 _ , +	 _ ,

1.2 , ≔ max , , , ≔ ,

1.3 For i = - 1, …, 1:

1.3.1 , := max{ , +, + }

1.3.2 , ≔ ,

2. During cycle , , 2 e , + 1:

2.1 , ≔ max , 	 	, , 	 	 , , :=	 , + Q

2.2 For i = - 1, …, e:

, ≔ , 	 	, , 	 	 , , ≔ ,

3. During cycle , :

Output: , ≔ , =
, , ,

, , ≔ ,

4. If - , :

4.1 During cycle , , 2 e :

4.1.1
, , ≔ max , 	 	,

, , 	 	 ,
, , ≔

, ,

4.1.2 For i = - 1,…, e + , :

		
, , ≔ max

, , 	 	,
, , 	 	 ,

, , ≔

, ,

4.1.3 , := max
, , ,

	 	, , 	 	 , , ≔ ,

4.1.4 For i = e - 2,…, 0:

2

, ≔ max , 	 	, , 	 	 for 0, otherwise , ≔ , , in

both situations , ≔ ,

4.2 During cycle , , + 1 e - , :

4.2.1 Repeat the Steps 4.1.1-4.1.2

4.2.2 , ≔ max
, , ,

, , 	 	 , , ≔

,

4.2.3 For i = - 1, …, 0:

, ≔ max , 	 	; 	 , 	 	 if 0,	otherwise , ≔ , , in

both situations, , ≔ ,

4.3 Output: , ≔ 	 , , _ 1 , ≔ 	
, , - ,

5. Otherwise if - , :

5.1 During cycle , , 2 e - , , repeat the Steps 4.1.1-4.1.4

5.2 During cycle , , – , + 1 e :

5.2.1 , ≔ max , 	 	, , 	 	 if e – , + 1, otherwise

, ≔ , 	 	, , 	 	 , in both situations , ≔ ,

5.2.2 For i = e - 2,…,0:

, ≔ max , 	 	; 	 , 	 	 	if	 0, otherwise , ≔ , + , in

both situations , :=	 ,

6. Output: , =	 , , _ 1 , 	 , - , .

The starting time of the close-down period of job [j] is : , + 	 _ ,

+ 	 _ , . By the BESS algorithm we know that starting from 0, , will be

executed. Thus, the robot first moves to the ()th step and the value of , depends on if the

wafer in this step is finished or not. Hence, we have Statement 1.2. Then, the robot moves to step

i, i = - 1, - 2, …, 1, unloads a wafer there, moves to step i + 1 and loads the wafer there.

Thus, Statement 1.3 is realized in a similar way.

3

During cycle , , 2 e , + 1, job [j] is performed in a decremental way and job

[j+1] has not started. Therefore, Statements 2.1 and 2.2 can be obtained easily.

During cycle , , as we can see from Fig. 7, we only unloads the first wafer of job [j+1]

from one load lock and loads it into the first step of . Combined with Statement 2.2 we get

Statement 3.1.

In the following, if - , , job [j+1] reaches the steady state before

BESS_close{[j]} ends. During cycle , , 2 e , as job [j] is performed in a

decremental way, and job [j+1] is executed in an incremental way. Thus, similar to Statements

5.1.1-5.1.4 we can get Statements 4.1.1-4.1.4 in the JC 2 algorithm. Note that as
, ,

has executed in Statements 2.1 and 2.2, hence, the index of U and L in Statements 4.1.1 and 4.1.2

has to start from 2 + , .

During cycle , , + 1 e - , , job [j+1] has reached the steady state

but job [j] is still run in a decremental way. Thus, we repeat Statements 4.1.1 and 4.1.2 for job [j].

Combined with Statement 4.2.1, we get Statements 4.2.2 and 4.2.3 such that , and

ts_start{[j+1], k} can be determined.

If - , , BESS_close{[j]} ends before job [j+1] reaches the steady state, and

during cycle 	 , , 2 e - , , jobs [j] and [j+1] are also performed in a

decremental and incremental way. Therefore, we have to repeat Statements 4.1.1-4.1.4. However,

during cycle , , - , + 1 e , BESS_close{[j]} has completed but job

[j+1] is still run in an incremental way. Thus, Statement 5.2 is obtained in a similar way such that

, and ts_start{[j+1], k} can be determined.

